Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Naser, Murtada D (Ed.)The Plio-Pleistocene turnover event in the western Atlantic following the closure of the Central American Seaway involved high rates of extinction for both gastropod and bivalve molluscs. This extinction was associated with declining nutrient conditions and has been presumed to be associated with a decrease in molluscan body size. Previous work which has been concordant with this expectation, however, has either focused on bivalves or not considered the effects of the recovery post extinction. In three phylogenetically diverse clades, we found that body-size evolution in gastropods across the turnover event is likely tied to ecology. One clade increased in size, one decreased, and another exhibited no substantial change. Individual species lineages exhibit a mixture of microevolutionary changes from the Pliocene to today. This study indicates that gastropod body-size evolution may be more complex than in bivalves, with ecology and other functional traits playing a significant role. Macroevolutionary processes, especially whether a clade re-radiated post extinction, were found to be important. Indeed, a low portion of extant diversity consists of survivors from clades that increased in size or have similar size distributions among their species relative to the Pliocene.more » « lessFree, publicly-accessible full text available December 13, 2025
-
Preliminary data indicate between the latest Pliocene and recent approximately 85% of bivalves and 90% of gastropod species in Florida and the Atlantic Coastal Plain became extinct, with high levels of origination resulting in similar total species richness in the region today. We expected this event may have impacted molluscan body size as body size in mollusks is generally correlated with nutrient availability and primary productivity, which decreased following the Pliocene closure of the Central American Seaway. Previous work indicated small body size is associated with extinction survival during this event in both bivalves and gastropods. Where all extant and Pliocene members of surviving bivalve clades have been compared, these have also declined in size; comparable studies of all extant and Pliocene members of gastropod clades have not yet, however, been undertaken. We investigated 3 families of gastropods of differing ecology with both high turnover and at least one boundary-crossing lineage in order to assess the impact of the turnover event on each clade’s body size. These were the predatory Conidae, the herbivorous Tegulidae, and the suspension-feeding Turritellidae. These had approximately 65%, 75%, and 90% extinction, respectively, with modern diversity at 110%, 100%, and 10% of their respective Pliocene species richness in the region. Despite high levels of turnover, we found no general pattern of body-size change associated with the event either within clades or among boundary-crossing lineages. While many of the largest species of Conidae and Turritellidae did become extinct, this was balanced by the loss of smaller-bodied species, while the Tegulidae increased in size. Among ancestor-descendant pairs, 1 turritellid decreased in size while 1 remained unchanged, 4 Conidae decreased in size while 2 increased in size, and 1 tegulid increased in size. These data suggest that for gastropods there were complex interactions between ecology, extinction, origination, and body-size evolution associated with this event and that a more phylogenetically-diverse dataset is needed to determine whether generalizable patterns exist which may be used to predict responses to future environmental change.more » « less
-
Predation traces found on fossilized prey remains can be used to quantify the evolutionary history of biotic interactions. Fossil mollusc shells bearing these types of traces provided key evidence for the rise of predation during the Mesozoic marine revolution (MMR), an event thought to have reorganized global marine ecosystems. However, predation pressure on prey groups other than molluscs has not been explored adequately. Consequently, the ubiquity, tempo and synchronicity of the MMR cannot be thoroughly assessed. Here, we expand the evolutionary record of biotic interactions by compiling and analysing a new comprehensively collected database on drilling predation in Meso-Cenozoic echinoids. Trends in drilling frequency reveal an Eocene rise in drilling predation that postdated echinoid infaunalization and the rise in mollusc-targeted drilling (an iconic MMR event) by approximately 100 Myr. The temporal lag between echinoid infaunalization and the rise in drilling frequencies suggests that the Eocene upsurge in predation did not elicit a coevolutionary or escalatory response. This is consistent with rarity of fossil samples that record high frequency of drilling predation and scarcity of fossil prey recording failed predation events. These results suggest that predation intensification associated with the MMR was asynchronous across marine invertebrate taxa and represented a long and complex process that consisted of multiple uncoordinated steps probably with variable coevolutionary responses.more » « less
-
ABSTRACT Interactions with predators and parasites can result in traces found on Recent and fossil echinoids. However, identifying specific trace makers, particularly on fossil echinoids, remains contentious. To document the range of trace morphologies present on echinoids and improve our ability to identify and quantify biotic interactions affecting echinoids, we characterized traces found on fossil echinoids using museum collections and field sampling spanning the Jurassic to Recent worldwide. Using light microscopy, 8,564 individual echinoid specimens were examined including 130 species, and 516 traces of potential biotic interactions identified. Morphological characteristics were recorded for each trace, including the shape of the trace outline, maximum diameter and cross-section profile. Based on shared morphological characteristics, it was possible to classify all traces into eight categories: circular, subcircular, elongated, irregular, rectangular, figure-eight, notched, and linear. Cross-section characteristics provided additional insights into the identity of potential trace makers. To further evaluate the proposed biotic origins of these traces, trace diversity was examined through time and compared with anticipated ecological trends associated with the diversification of echinoids, and their predators and parasites. Trace diversity increased over time, starting in the late Eocene, coincident with the proliferation of echinoid-drilling gastropods, an indication that biotic interactions intensified through evolutionary time, as predicted by several macroevolutionary hypotheses previously tested using mollusks. The morphological descriptions provided here enhance our understanding of biotic traces on fossil echinoids, and the potential to identify temporal trends in the intensity and diversity of biotic interactions that have affected echinoids throughout their evolutionary history.more » « less
An official website of the United States government
